电脑系统和哪个硬件有关系_系统和硬件的关系
1.计算机硬件包括哪些
2.电脑硬件之间的关系是如何的?
3.操作系统与计算机软硬件有什么关系
电脑安装32位还是64位跟硬件有没有关系?我们知道操作系统分32位和64位,有些用户在选择操作系统时,突然遇到一个问题,不知道选择32位还是64位系统。这个选择32位还是64位,跟硬件是有关系的,如果是老旧电脑,确实需要检测一下是否支持64位系统,如果是新型的电脑,一般都同时支持32位和64位。
相关教程:
32位系统下装64位系统教程
如何用u盘装windows764位旗舰系统
电脑装32位还是64位的相关说明:
1、电脑装32位还是64位跟硬件有关系,电脑位数一般取决于cpu,通常64位电脑同时支持32位和64位两种系统的安装,32位电脑则只能装32位系统,装64位不支持;
2、另外,运行内存也是决定因素之一,内存4G以内装32位系统,大于4G就要装64位系统,因为32位系统只能识别4G以内的内存;一些系统自带相关的识别功能可以判断能否装64位系统,下面介绍两种方法来检测;
方法一:通过计算机评分查看
1、以win732位为例,在桌面上右键点击计算机—属性;
2、系统分级,点击“windows体验指数”看第4步,如果没有指数,则点击“系统分级不可用”;
3、点击“为此计算机分级”,需等待几分钟;
4、点击“查看和打印详细的性能和系统信息”;
5、这时候会显示计算机的详细信息,这边会提示你是否支持64位,如果支持64位,表示32位和64位系统都可以装,如果不支持,只能装32位系统。
方法二:windows7升级顾问检测
1、如果是xp系统,下载工具:Windows7升级顾问2.0.5官方下载;
2、安装windows7升级顾问后,打开主界面,点击“开始检查”;
3、等待一段时间之后,显示结果,如果不支持,会有红叉,下面显示32位和64位报告,点击64位报告,表示支持64位,但是有部分硬件不符合要求,一般可以加内存或增加空间解决。
电脑装32位还是64位系统与硬件是有关系的,现在的新型电脑都是64位的,同时支持32位和64位系统,大部分是装64位系统。
计算机硬件包括哪些
一台完整的电脑系统由硬件系统和软件系统组成 。
硬件的系统包括控制器、运算器、储存设备、输入设备、输出设备五个部分。用通俗的方式再介绍一下,一台家用电脑的硬件有CPU、主板、内存、显卡、声卡、硬盘、光驱、机箱、电源、显示器、键盘、鼠标。另外还有一些可以选配的硬件,比如手写板、电视卡、等等。
电脑的软件系统包括系统软件和应用软件二个部分。?
一台家用电脑的软件有操作系统和应用软件,操作系统是必须有的,应用软件可以根据需要安装的。
计算机系统指用于数据库管理的计算机硬软件及网络系统。数据库系统需要大容量的主存以存放和运行操作系统、数据库管理系统程序、应用程序以及数据库、目录、系统缓冲区等,而辅存则需要大容量的直接存取设备。此外,系统应具有较强的网络功能。
硬件系统主要由中央处理器、存储器、输入输出控制系统和各种外部设备组成。中央处理器是对信息进行高速运算处理的主要部件,其处理速度可达每秒几亿次以上操作。存储器用于存储程序、数据和文件,常由快速的主存储器(容量可达数百兆字节,甚至数G字节)和慢速海量辅助存储器(容量可达数十G或数百G以上)组成。各种输入输出外部设备是人机间的信息转换器,由输入-输出控制系统管理外部设备与主存储器(中央处理器)之间的信息交换。
折叠软件
软件分为系统软件、支撑软件和应用软件。系统软件由操作系统、实用程序、编译程序等组成。操作系统实施对各种软硬件资源的管理控制。实用程序是为方便用户所设,如文本编辑等。编译程序的功能是把用户用汇编语言或某种高级语言所编写的程序,翻译成机器可执行的机器语言程序。支撑软件有接口软件、工具软件、环境数据库等,它能支持用机的环境,提供软件研制工具。支撑软件也可认为是系统软件的一部分。应用软件是用户按其需要自行编写的专用程序,它借助系统软件和支援软件来运行,是软件系统的最外层。
电脑硬件之间的关系是如何的?
电脑系统是以电脑为核心的能完成一定功能的完整系统。第一台电脑是1946年的宾夕法尼亚大学的电子管电脑,之后经历了晶体管电脑、集成电路电脑、大规模集成电路电脑、超大规模集成电路电脑。电脑系统是由硬件系统和软件系统两大部分组成。
电脑的硬件是指构成电脑的物理设备,分为运算器、控制器、存储器、输入设备和输出设备五大部分。
一、电脑的基本硬件组成。
主机是整个电脑的主体,可以说用电脑来工作的时候,工作是在它内部完成的。主机外观上分为立式和卧式两种。立式机箱的结构更利于散热,更受人们欢迎一些。
键盘是电脑中不可缺少的输入设备,用户可以通过键盘输入命令和数据,并可通过它控制电脑的运行。常见的键盘大多是101或104键的,一些较为新颖的104键盘往往带有两个Windows键和一个应用程序键,以提高在Win7操作系统上操作电脑的效率。这些键可以分为大键盘区、编辑键区、功能键区和小键盘区。
大键盘区共有六十一个键,这些键的排列和打字机的布局相同,包含了字母26个、数字10个、常用标点符号、空格键以及个别的电脑专用键,用于输入文字、数字,符号,向电脑发布各种命令。
功能键区在键盘的左上方,共有十二个键,键上标有F1到F12,作用和功能用操作系统、应用软件定义,按F1可以打开应用程序的帮助。
编辑键区在键盘上的右侧中间地带,共有十个键,用于文字编辑中,控制光标的翻页,移动,以及文字的插入和删除等。
小键盘区是键盘最右边的十七个键,包括数字、小数点、四则运算符号。
左上方功能键右侧还有三个键:屏幕打印键、滚屏锁定键和暂停键。
键盘的接口类型有AT接口、PS/2接口和USB接口三种,可与主板上相应的接口连接,连接时只要根据接口的形状和颜色进行对应就行了,一般不会接错。
目前有很多键盘是根据人体工学原理设计的。
显示器是电脑基本的输出设备,是整个电脑硬件系统中不可缺少的部分。
我们现在常用的是液晶显示器,与传统的阴极射线管显示器相比,辐射比较低、体积小,耗电少。它利用液晶的特性,通电时排列变得有秩序,使光线容易通过,不通电时排列混乱,阻止光线通过,通过电路控制,显示图像。它的参数有以下几项:
屏幕尺寸:指屏幕本身的大小。
可视角度:屏幕法线与用户可看清楚屏幕上的显示内容位置的夹角。液晶显示器的可视角度是左右对称,上下可不对称。
分辨率:显示器所能显示的像素数量,是每行点数和每屏行数的乘积。
点距:显示器相邻的两个像素之间的距离。点距越小,显示器画面越清晰。
响应时间:液晶显示器各个像素对输入信号反应的速度,即像素由暗转亮或由亮转暗的速度。
鼠标是电脑中重要的输入设备,它能方便地把鼠标指针准确定位在我们指定的屏幕位置,很方便地完成各种操作。
按其工作原理,鼠标分为机械鼠标、光电鼠标和光机鼠标。目前我们常常用的鼠标是光电鼠标。光电鼠标的下面是两个平行放置的小光源,这种鼠标只能在特定的鼠标垫上移动,光源发出的光经过鼠标垫反射后由鼠标接收为移动信号,送入电脑,使屏幕上的鼠标指针随之移动。鼠标指针和鼠标的移动方向是一致的,移动距离也成比例。光电鼠标使用时比较灵活,故障率比较低。
鼠标一般有左、右两个按键,左键最常用,右键其次,在两个按键之间有一个可滑动的滚轮,主要方便浏览网页。鼠标联到主机串行口后,装入了鼠标驱动程序才能使用,但对于与微软兼容的鼠标,在Win7安装时,已经自动地安装了与微软兼容的鼠标驱动程序,所以在Win7环境下,不需要安装鼠标驱动程序。按接口类型的不同,鼠标分为串行鼠标、PS/2鼠标、总线鼠标和USB鼠标。
鼠标的主要性能指标是分辨率,即每移动一英寸所能检出的点数。
无线鼠标是在鼠标中用干电池无线遥控,用USB接收器通过USB连接,有自动休眠功能,接收范围在十米以内。3D振动鼠标由扇形底座和一个能够活动的控制器组成,具有全方位立体控制能力,并具有振动功能。
音箱相当于电脑的嘴巴和喉咙,有了它电脑才能发出悦耳的声音。音箱的外壳有木质和塑料两种,两只音箱一左一右摆放在电脑两侧,与显示器有一定距离,才能得到立体声效果。
麦克风相当于电脑的耳朵,有了它电脑才能把外部的声音传送到电脑中,变换成数字波形,输入到文件或多媒体图像中。
非对称数字用户线技术是一种在电话线基础上的宽带技术,把一条双绞线上用户频谱分为三个频段,上行速度低,下行速度高(是以前的调制解调器的150倍)而不对称。
非对称数字用户线是一种专线上网方式,可以和普通电话共存于一条电话线上,上网与接听和拨打电话互不影响,不需要拨号。
电话线入户信号是模拟信号,电脑所处理的信息是数字化的,所以电脑入网通信时把模拟信号转换为数字信号,把数字信号转换为模拟信号,分别称之为调制和解调。所以我们把两种功能都有的硬件设备叫做调制解调器,俗称“猫”。非对称数字用户线调制解调器分为内置、外置和USB三种类型。
打印机也是一种常用的输出设备。因为显示器上显示的内容一旦关机就看不见了,也不方便把显示器搬来搬去给别人阅读,所以我们还是需要用打印机把自己的工作成果打印出来。
打印机分为针式打印机、喷墨打印机和激光打印机。
针式打印机通过打印头上的针打印字符和图形,分辨率较低,打印速度比较慢。
喷墨打印机体积小,质量小,打印分辨率在360点/英寸以上,打印速度比较慢,效果一般。
激光打印机是复印机、电脑和激光的组合,打印速度快,分辨率高,无噪声,用同步的多面镜像和完整的光学部件在硒鼓上写字符,激光扫过硒鼓时,通过开关的两种状态表示白色区域和黑色区域。硒鼓旋转一圈,激光打印机就打印出一行。激光打印机本身含内存,一般在64MB到2GB之间。
扫描仪是文字和输入的主要设备,相当于电脑的眼睛,能够通过光电器件把光信号转换为电信号,把电信号通过模数转换器转化为数字信号传输到电脑中,把大量的文字、信息输入到电脑中。
扫描仪的关键器件是电荷耦合器,采用三棱镜分色光学系统,以三棱镜来分离自然光为红、绿、蓝三原色来扫描图形。
平板式扫描仪,文字和固定在一个玻璃窗口中,扫描头在文字或下移动,接受来自文字或的反射光,这些反射线由一个镜面系统进行反射,通过凸透镜把光聚焦到光敏二极管上面,把光变成电流,最后再转换成数字信息存储在电脑中,它能一次扫描,读入一整页的文字或。
扫描仪的性能指标包括:光学分辨率、色彩位数、扫描速度和幅面大小。光学分辨率也叫水平分辨率,单位为像素/英寸或点/英寸。色彩位数是扫描仪对色彩的分辨能力。
摄像头可以分为数字摄像头和模拟摄像头两大类,数字摄像头可以直接捕捉影像,通过串口、并口或USB接口传到电脑里。根据摄像头的形态,可以分为桌面底座式、高杆式和液晶挂式。摄像头还可以分为有驱动和无驱动型的摄像头。
摄像头的技术指标有图像解析度/分辨率,图像格式、色彩位数、图像压缩方式,性能指标有视频捕获率、水平和垂直扫描频率、最大活动影像分辨率、最大静态图像分辨率、信噪比和自动亮度调节等。
数码相机是一种新型的图像处理设备,它的工作原理和一般的照相机相同,是利用当物体离凸透镜的距离大于两倍焦距时,凸透镜能成倒立缩小的实像的原理,把外界的图像感光到照相机内部的感光芯片上,经过数字处理后,直接存储到照相机的存储器上,并可直接放到电脑上使用,但照片质量略逊色于传统照片。镜头焦距越长,凸透镜和感光器移动空间越大,变焦倍数越大,能拍摄的景物就越远。
数码相机的像素数包括有效像素(真正参与感光成像的像素值,在镜头变焦倍率下换算出来的数值)和最大像素(感光器件的真实像素)。
电脑的触摸屏是一种新颖的输入设备,包括表面声波触摸屏、电阻触摸屏、电容触摸屏和红外线触摸屏。它有输入设备的功能,用手在屏幕上直接发出指令,离开了电脑屏幕就不能单独使用,具有输出功能。
表面声波是一种沿介质表面传播的机械波。手指触及屏幕时,触点上的声波被阻止,确定坐标位置。触摸屏由玻璃平板做成,安装在显示器屏幕的前面,左上角和右下角是垂直和水平方向的超声波发射换能器,右上角固定了两个相应的超声波接收换能器。四个周边有45度角由疏到密间隔精密的反射条纹。
电阻触摸屏是一块与显示器表面配合的多层复合薄膜,基层为一层有机或无机玻璃,表面有一层透明的导电层,盖有一层外表面硬化处理、光滑防刮的塑料层,内表面也有一层透明导电层,两层导电层之间有许多细小的透明隔离点把它们隔开绝缘。
电容触摸屏是在玻璃屏幕上镀一层透明的薄膜体层,在导体层外加上一块保护玻璃,四边镀上狭长的电极,导体内形成一个低电压交流电场。
红外线触摸屏由装在触摸屏外框上的红外线发射与接受感测元件构成,手可以改变触点上的红外线,实现触摸屏操作。
电脑上的操作不再单一依靠键盘与鼠标,光笔适合习惯书写用户的操作,具有全范围的鼠标功能,与电脑的串行口相连。
光笔可以在电脑屏幕上直接操作,或在反射板上进行操作。用光笔,用户可以用与习惯的书写方式一样来输入文字,无须掌握输入法。
投影仪是由凸透镜、平面镜、光屏等元件组成的光学仪器,它可以将投影片上的图像或文字放大后投射到银幕上,是利用物体离开凸透镜的距离小于两倍焦距大于焦距时,凸透镜成倒立放大的实像的原理,技术指标是光亮度,是描述单位时间内光源辐射产生视觉响应强弱的能力,国际单位制里,它的单位是流明。
投影仪与主机的显示卡相连,视频输出是接显示器上的十五针D型接口电缆,使显示器像原来一样工作。
液晶是介于液态和固态物质之间的物质,投影仪利用液晶的光电效应,产生具有不同灰度层次、颜色的图像,分为液晶光阀投影仪和液晶板投影仪。
绘图仪是按照人们要求自动绘制图形的设备。它可以把电脑的输出信息以图形的形式输出。绘图仪主要用于绘制各种管理图表和统计图、大地测量图、建筑设计图、电路布线图、各种机械图与电脑辅助设计图等。
现代的绘图仪已具有智能化的功能,它自身带有处理器,可以使用绘图命令,具有直线和字符演算处理以及自检测等功能。在绘图软件的支持下,绘图仪可以绘制出复杂而精确的图形,是各种电脑辅助设计不可缺少的工具。绘图仪的性能指标主要有绘图笔数、绘图纸尺寸、分辨率、接口形式及绘图语言等。绘图仪的种类很多,按照结构和工作原理,绘图仪可以分为滚筒式和平台式两大类。
二、主机的基本硬件组成。
打开主机箱,我们可以看到主机由电源、主板、中央处理器、内存、硬盘、显示卡和声卡等部件组成。
电源一般都安装在主机箱内,它的作用是把交流220V电压转换成供电脑元器件工作的±5V、±12V等直流电压。电源的质量对电脑的稳定性来说至关重要,因为电源故障很容易造成电脑工作不正常,严重时甚至烧毁主板、中央处理器等贵重部件。
电源上一般都带有一个风扇,通过机箱上的相应开口向外吹风,它的作用除了冷却电源本身外,还用于机箱内的空气流通和降温,因此通常希望风扇的风量尽可能大,噪声尽可能小。
我们现在用的是一种新的电源结构,叫做ATX电源。ATX电源功能十分强大,不但有更强的电源管理能力,而且还支持软关机。有了它,在你用鼠标确认关机之后,用不着再用手去按主机箱上的POWER按钮,电脑就已经可以自动关闭了。
现在的多媒体电脑使用350瓦特的电源。
微型电脑的主机内一般安装着系统主板,是安装在主机中最大的一块印刷电路板,上面分布着构成电脑系统电路的各种元器件和插接件。
主板上面有许多大规模集成电路、超大规模集成电路器件和电子线路、其中包括芯片组、中央处理器插座、内存插槽、总线扩展槽、外设端口和BIOS芯片。许多主板带有电源管理功能,在规定时间内,无键盘、鼠标和磁盘操作时,系统自动切断磁盘驱动器和显示器的电源,使屏幕变黑,系统只给中央处理器供电。总线是用一串插接器组成一组导线,所有的插接器与每条线相连。当一块总线适配卡插入到某个扩展槽中,就与总线的公共导线接上了,它能接收到微机内部传来的公共信号和信息。ISA扩展槽的颜色一般是黑的,是主板中最长的扩展槽,是早期主板必备的插槽之一。PCI扩展槽长度短,颜色一般为白色,位宽一般为32位或64位。目前只有显示卡才有AGP总线。
并行通信端口,即LPT1,俗称打印口,因为它常接打印机,它是同时传送八路信号,一次并行传送完整的一个字节信息。
串行通信端口,即COM1、COM2,一般接鼠标,外置Modem或其他串口设备。它在一个方向上只能传送一路信号,一次只能传送一个二进制位,传送一个字节信息时,只能一位一位地依次传送。
USB端口,可用于U盘、数码相机、手机、还可以用于打印机。现在的打印机可以通过USB端口直接连接电脑,安装相应的打印机驱动程序即可使用。
在主板上,一般都有ROM-BIOS,是固化在只读存储器中的系统引导程序。它保存着电脑最重要的基本输入输出的程序,系统设置信息,开机上电自检程序和系统启动自举程序。只读存储器平时是只读不写的。
中央处理器是电脑的心脏,由运算器和控制器组成,内部结构分为控制器、运算器和存储器,这三个部分相互协调,可以进行判断、运算和并控制电脑各部分协调工作。
目前流行的中央处理器为英特尔酷睿中央处理器,分为双核、四核和八核。双核中央处理器是基于单个半导体的一个处理器上拥有两个一样功能的处理器核心。
衡量中央处理器的指标是字长,字长是电脑能直接处理的二进制数据的位数,标志着电脑处理数据的能力,字长决定了电脑运算的能力和精度,字长越长,电脑的运算能力越强,精度越高,有效数据的存储单元数越多,寻找地址的能力越强。现在个人电脑的字长分为十六位、三十二位和六十四位。
可以进行高速数据交换的存储器叫做缓存,也叫高速缓存。中央处理器一般会从缓存读取数据,中央处理器没有数据时才会向内存调用数据。缓存容量越大,中央处理器的性能越好。中央处理器的缓存分为一级缓存和二级缓存。酷睿处理器中,四个核心的内存控制器和缓存都在单一的晶元上面。
内存是电脑的记忆部件,用于存放电脑运行中的原始数据、中间结果以及指示电脑工作的程序。
内存可以分为随机访问存储器和只读存储器,前者允许数据的读取与写入,磁盘中的程序必须被调入内存后才能运行,中央处理器可直接访问内存,与内存交换数据。电脑断电后,随机访问存储器里的信息就会丢失。后者的信息只能读出,不能随意写入,即使断电也不会丢失。
由于电路的复杂性因素,电脑中都使用二进制数,只有0和1两个数码,逢二进一,最容易用电路来表达,比如0代表电路不通,1代表电路通畅。我们平时用电脑时感觉不到它是在用二进制计算是因为电脑会把你输入的信息自动转换成二进制,算出的二进制数再转换成你能看到的信息显示到屏幕上。
在存储器中含有大量的基本单元,每个存储单元可以存放八个二进制位,即一个零到二百五十五之间的整数、一个字母或一个标点符号等,叫做一个字节。存储器的容量就是以字节为基本单位的,每个单元都有唯一的序号,叫做地址。中央处理器凭借地址,准确地操纵着每个单元,处理数据。由于字节这个单位太小了,我们定义了几个更大的单位,这些单位是以2的十次幂做进位,单位有KB、MB、GB、TB等。
常见的内存包括同步动态随机存储器、双倍速率同步动态随机存储器、接口动态随机存储器。
外存储器就像日记本一样,用来存放一些需要长期保存的程序或数据,断电后也不会丢失,容量比较大,但存取速度慢。当电脑要执行外存里的程序,处理外存中的数据时,需要先把外存里的数据读入内存,然后中央处理器才能进行处理。
硬盘的磁性圆盘由硬质材料制成,有很高的精密度。硬盘连同驱动器一起封闭在壳体内,它的容量比优盘和光盘大得多,读写速度比优盘和光盘快得多。
硬盘是由几片硬盘片环绕一个共同的轴心组成的盘片组,两个盘片之间仅留出安置磁头的距离。每个盘片有两个盘面,盘面上划分着许多同心圆,称为磁道。这些同心圆周长不同,但存储量却相同。每个磁道被分为很多区域,每个区域叫做一个扇区,每个扇区存储五百十二个字节的信息。在硬盘中,几个盘片上相同磁道号的集合叫做柱面,这些磁道有一个相同的磁场旋转方向。每个盘面对应一个磁头,但现在的硬盘,两个磁头可以读取一个盘片。所以硬盘容量由柱面数、盘面数、每磁道的扇区数决定。硬盘容量等于柱面数乘以盘面数乘以每个磁道的扇区数乘以512,一般以GB、TB为单位,很多硬盘厂商计算GB和TB时是十进制的,1GB是1000MB,1TB是1000GB。
硬盘内部由磁储存盘片组成,数量从一片到三片不等,每个盘片有一定的容量,叫做单碟容量,几个盘片的容量之和就是硬盘总容量。
硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方,硬盘通过磁头来读取盘片上的数据,转速越快,数据读取的时间也就越短。转速在很大程度上决定硬盘的速度。
硬盘的磁头移动到盘面指定的磁道所用的时间叫做平均寻道时间,单位为毫秒,这个时间越小越好。
数据传输率是电脑从硬盘中准确找到相应数据并传输到内存的速率,包括内部数据传输率和外部数据传输率,是用单位时间可传输几兆字节衡量的。硬盘的接口有IDE接口和SCSI接口。
闪存盘是具有USB接口的无须驱动器的微型高容量移动存储产品。采用Flash芯片为存储介质,通过USB接口与电脑连接,实现即插即用。
电脑把二进制数字信号转为复合二进制数字信号(加入分配、核对、堆栈等指令)读写到USB芯片适配接口,通过芯片处理信号分配给EEPROM存储芯片的相应地址存储二进制数据,实现数据的存储。EEPROM数据存储器,其控制原理是电压控制栅晶体管的电压高低值,栅晶体管的结电容可长时间保存电压值,断电后能保存数据的原因主要就是在原有的晶体管上加入了浮动栅和选择栅。在源极和漏极之间电流单向传导的半导体上形成贮存电子的浮动栅。浮动栅包裹着一层硅氧化膜绝缘体。它的上面是在源极和漏极之间控制传输电流的选择/控制栅。数据是0或1取决于在硅底板上形成的浮动栅中是否有电子。有电子为0,无电子为1。闪存就如同其名字一样,写入前删除数据进行初始化。具体说就是从所有浮动栅中导出电子。即将有所数据归“1”。写入时只有数据为0时才进行写入,数据为1时则什么也不做。写入0时,向栅电极和漏极施加高电压,增加在源极和漏极之间传导的电子能量。这样一来,电子就会突破氧化膜绝缘体,进入浮动栅。读取数据时,向栅电极施加一定的电压,电流大为1,电流小则定为0。浮动栅没有电子的状态(数据为1)下,在栅电极施加电压的状态时向漏极施加电压,源极和漏极之间由于大量电子的移动,就会产生电流。而在浮动栅有电子的状态(数据为0)下,沟道中传导的电子就会减少。因为施加在栅电极的电压被浮动栅电子吸收后,很难对沟道产生影响。
优盘的容量通常为1GB到8GB。
光盘的容量大,大约700兆到50GB,携带方便、成本低廉,其容量相当于几百张软盘或优盘的容量之和。
光盘主要分为五层:基板、记录层、反射层、保护层和印刷层。光盘的材料为塑料,数据面镀了一层铝,数据被记录在高低不同的凹凸起伏槽上,通过光盘驱动器的激光头来读取数据。光头发出的激光照射到凹凸面上,然后聚焦到反射层的凹进和凸起上。凸面会把激光原封不动地反射回去,凹进面是把光发散出去。光盘驱动器依据“反射”和“发散”来识别数据,光强度由高到低,由低到高的变化为1,持续一段时间的连续光强度为0。
光盘驱动器包括只读光盘驱动器、刻录机、DVD驱动器等。光盘驱动器一般是内置式的,前端面板上带有一个耳机插孔、音量控制转盘、LED指示灯、播放/跳过按钮、加载/退出CD按钮。显示卡的基本作用是控制电脑的图形输出,安装在电脑主板的扩展槽中,或者集成在主板上,工作在中央处理器和显示器之间。
显示卡主要包括图像处理器、显存、数模转换器、AGP总线接口等几个部分,数据流从中央处理器流出后,要把中央处理器传来的数据送到图像处理器中进行处理,把芯片处理完的数据送入显存,把显存读取出数据送到数模转换器进行数据转换的工作,从数模转换器进入显示器。
显存是显示卡的核心部件,存放显示芯片处理后的数据,显存越大,显示卡支持的最大分辨率越大。显存的容量至少是“水平分辨率*垂直分辨率*log2颜色数/8”。
网卡分为以太网网卡和笔记本网卡,一块网卡都具有LED指示灯,表示网卡的不同工作状态。笔记本电脑一般配有内置网卡和无线上网功能,可用网线通过笔记本上的RJ-45接口连接网络,无线上网时,需要检查笔记本无线上网的开关是否打开。
现在的主流网卡为PCI接口的网卡,理论带宽是32位133MB,目前的主流是10/100/1000MbpsPCI自适应网卡,可根据需要自动识别连接网络设备的工作频率,自动工作在10/100/1000Mbps的网络带宽下。
台式电脑的主板上有网卡,主机的后面有一个RJ45水晶接口,通过网线与网络连接。
声音是一种模拟信号,电脑对声音进行处理时,要经过模拟/数字的转换,把它变成一系列的数字量,叫做数字化。在电脑里,要想较完美地处理声音信息,就必须配备声卡。
声卡是多媒体电脑的基本配置。它的主要功能有三部分。音乐合成发音功能、模拟音频输入输出功能、混音效果器功能。
以往,在采用十六位声卡时,采样频率为44.1千赫,一秒钟的声音切分为44100等分,十六位的位长可以把信号幅度切分成65536等分。如果是二十四位的位长,可以把信号幅度切分成16777216等分。这就像长度的测量一样,用英尺做单位肯定比用英寸做单位显得粗糙。所以,在相同的采样频率下,位长越大,效果越好。相同位长的情况下,采样频率越高,效果越好。
视频卡和显示卡不一样,包括视频捕获卡、视频叠加卡、电视接收卡、电视编码卡、DVD回放卡等,用于多媒体电脑中的视频辅助功能。
视频捕获卡的主要功能是把影视图像数字化后,送给电脑加工处理。它能把标准的视频信号在电脑显示器上播放,进行视频图像的捕获。当视频捕获卡和显示卡相连后,可以对显示内容进行颜色和对比度方面的调整,并可以进行特技效果及字幕叠加等处理。
视频叠加卡通过视频输入接口把标准的视频信号输入,与电脑本身的VGA信号进行叠加,把综合处理的信号送入显示器。
电视接收卡接收PAL和NTSC制式的电视信号,可以在电脑屏幕前看电视。
电视编码卡是把电脑屏幕上的信号转换为电视信号,在电视上观看电脑屏幕上的画面。它的输出端接在大屏幕电视机的视频输入端上。
希望我能帮助你解疑释惑。
操作系统与计算机软硬件有什么关系
2.1 Windows应用程序,操作系统,计算机硬件之间的相互关系
WINDOWS程序设计是一种完全不同于传统的DOS方式的程序设计方法,它是一种事件驱动方式的程序设计模式,主要是基于消息的。当用户需要完成某种功能时会调用操作系统的某种支持,然后操作系统将用户的需要包装成消息,并投递到消息队列中,最后应用程序从消息队列中取走消息并进行响应。
我们这样解释上面的图例,向下的箭头1表示操作系统能够操纵输出设备,以执行特定的功能,如让声卡发出声音,让显卡画出图形。向上的箭头2表示操作系统能够感知输入设备状态的变化,如鼠标移动,键盘按下,并且能够知道鼠标移动的具体位置,键盘按下的哪个字符。这就是操作系统和计算机硬件之间的交互关系,应用程序开发者通常不需知道其具体实现细节。
2.1.1 关于API
向下的箭头3表示应用程序可以通知操作系统执行某个具体的动作,如操作系统能够控制声卡发出声音,但它并不知道何时发出何种声音,得由应用程序告诉操作系统该发出什么样的声音。这个关系好比有个机器人能够完成行走的功能,但是,如果人们不告诉它往哪个方向上走,机器人是不会主动行走的。这里的机器人就是操作系统,人们就是应用程序。
那么,应用程序是如何通知操作系统执行某个功能的呢?有过编程经验的读者都应该知道,在应用程序中要完成某个功能,都是以函数调用的形式实现的,同样,应用程序也是以函数调用的方式来通知操作系统执行相应的功能的。操作系统所能够完成的每一个特殊功能通常都有一个函数与其对应,也就是说,操作系统把它所能够完成的功能以函数的形式提供给应用程序使用,应用程序对这些函数的调用就叫做系统调用,这些函数的集合就是Windows操作系统提供给应用程序编程的接口(Application Programming Interface),简称Windows API。如CreateWindow就是一个API函数,应用程序中调用这个函数,操作系统就会按照该函数提供的参数信息产生一个相应的窗口。大家不妨看看EX02_00中的源程序,体会一下在程序中是如何调用这个CreateWindow API函数的,关于这个函数的详细解释,请参阅MSDN(微软开发编程的开发系统)。
顺便提一下,对于一个真正的程序员来说,不可能死记硬背每一个API函数及其各参数的详细信息。通常都是只记住其英文拼写,有时甚至是凭着语意拼读出来的,如显示窗口用ShowWindow,退出Windows操作系统用ExitWindows等等,API函数的正确拼写格式及各参数的祥尽信息都是在MSDN迅速检索到的,没必要刻意去死记这些信息,等用的次数多了,这些信息也就在不知不觉中掌握了,但一定要具备在需要的时候能够从帮助系统中检索想要的信息的能力,这样就能做到事半功倍。学习VC++,一定要有一套真实的练习环境,学会查阅帮助系统,决不能纸上谈兵,照着书本亦步亦趋,否则就真的是没有一两年的时间,是学不好VC++的了。
注意:请不要将这里的API与java API以及其他API混淆。API正如其语义一样,已成为一种被广泛使用的专业术语。如果某个系统或某个设备提供给某种应用程序对其进行编程操作的函数,类,组件等的集合,就称作该系统的API。曾经有学员问我这样的问题,Java API与windows API有何关系,是不是指java也可以调用windows里的API?读者现在应该明白这个问题了,不需我来回答了吧?
2.1.2 关于消息及消息队列
向上的箭头4表示操作系统能够将输入设备的变化上传给应用程序。如用户在某个程序活动时按了一下键盘,操作系统马上能够感知到这一事件,并且能够知道用户按下的是哪一个键,操作系统并不决定对这一事件如何作出反应,而是将这一事件转交给应用程序,由应用程序决定如何对这一事件作出反应。好比有个蚊子叮了我们一口,我们的神经末梢(相当于操作系统)马上感知到这个事件,并传递给了我们的大脑(相当于应用程序),我们的大脑最终决定如何对这一事件作出反应,如将蚊子赶走,或是将蚊子拍死。对事件作出反应的过程就是消息响应,由水平箭头5表示。
操作系统是怎样将感知到的事件传递给应用程序的呢?这是通过消息机制(Message)来实现的。操作系统将每个事件都包装成一个称为消息的结构体MSG来传递给应用程序的,参看MSDN,
MSG结构定义如下:
typedef struct tagMSG { // msg
HWND hwnd;
UINT message;
WPARAM wParam;
LPARAM lParam;
DWORD time;
POINT pt;
} MSG;
看不懂这种定义的读者,请赶快复习C语言,其基本意义是定义一个struct tagMSG的结构体,并在以后的应用中用MSG来代替struct tagMsg。该结构体中各成员变量的作用如下:
第一个成员变量hwnd即代表消息所属的窗口,一个消息一般都是与某个窗口相联系的,如在某个活动窗口中按下键盘,该键盘消息就是发给该窗口的,在VC中,用HWND变量类型来标识窗口。有关窗口的知识,在稍后有详细解释。
第二个成员变量message代表消息代号,无论是键盘按下,还是鼠标移动,都是用一个数字来表示的,不同的数值对应不同的消息。由于数值不便于记忆,在VC中将消息对应的数值定义为WM_xxx宏的形式,xxx对应某种消息的英文拼写的大写,如鼠标移动消息为WM_MOUSEMOVE,键盘按下消息为WM_KEYDOWN,输入一个字符消息为WM_CHAR等等。我们在程序中一般以WM_xxx宏的形式来使用消息。
提示:如果想知道WM_xxx消息对应的具体数值,请在程序中选中WM_xxx,单击右键,在弹出菜单中选择goto definition即可看到该宏的具体定义。跟踪,查看某个变量的定义,使用此方法非常有效。
第三个,四个成员变量分别为wParam、lParam,用于对消息进行补充说明,如message成员表示字符消息,但没有说明输入的是哪个字符,这就需要用其他变量对其进行补充说明。wParam,lParam代表的意义是随消息的不同而异。读者可用goto definition功能查看WPARAM、LPARAM的定义,发现它们分别为unsigned int和long,并不是什么神秘莫测的变量类型。VC++中之所以要这样做,是希望从变量定义的类型上,就能区分出变量的用途。对于同一种变量类型,可按其用途细分定义成多种其他的形式。这种概念在VC++中被广泛使用,也是导致初学者困惑的一个因素。
最后两个变量分别代表发出消息的时间和鼠标的当前位置,这里没有什么需要特殊解释的。
明白了消息,我们再来看看消息队列(Queue)。如上面的图例所示,每个Windows程序都有一个消息队列。队列是一个先进先出的缓冲区,通常是一个某种变量类型的数组。消息队列里的每一个元素就是一条消息,操作系统将生成的每个消息按先后顺序放进消息队列里,第一条消息放入第一格,第二条消息放入第二格,依次类推…...。应用程序总是取走队列里的第一条消息,消息取走后,第二条消息成为第一条,剩余的消息依次前移。应用程序取得消息后,便能够知道用户的操作和程序状态的变化。
例如,若应用程序从队列里取到了一条WM_CHAR消息,那一定是用户输入了一个字符,并且能够知道输入的是哪个字符。应用程序得到消息后,就要对消息进行处理,这即我们通常说的消息响应,消息响应是我们通过编码实现的,这也是Windows程序的主要代码区。在消息响应代码中,我们很可能又要调用操作系统提供的API函数,以便完成特定的功能。如果我们收到窗口的WM_CLOSE消息,我们可以调用DestroyWindow这个API函数来关闭该窗口,或是用MessageBox这个API函数来提示用户是否真的要关闭窗口。
通过上面的分析,我们可以想像到,要用VC++编写Windows程序,除了要具备良好的C语言功底外,还要求掌握两点知识:1.不同的消息所代表的用户操作和程序状态,2.要让操作系统执行某个功能所对应的API函数。
2.2 关于句柄
在Windows编程中我们时刻接触到一个称为句柄(HANDLE)的东西。可以这样去理解句柄,Windows程序中产生的任何资源(要占用某一块或大或小的内存),如图标,光标,窗口,应用程序的实例(已加载到内存运行中的程序)等等,操作系统每产生一个这样的资源时,都要将它们放入相应的内存,并为这些内存指定一个唯一的标识号,这个标识号即该资源的句柄。
操作系统要管理和操作这些资源,都是通过句柄来找到对应的资源的。按资源的类型,又可将句柄细分成图标句柄(HICON),光标句柄(HCURSOR),窗口句柄(HWND),应用程序实例句柄(HINSTANCE)等等各种类型的句柄。操作系统给每一个窗口指定的一个唯一的标识号即窗口句柄
操作系统是管理计算机软硬件资源、控制程序运行、改善人机界面和为应用软件提供支持的一种系统软件。
操作系统可以管理整台计算机的硬件,它可以控制CPU进行正确的运算,可以分辨硬盘里的数据并进行读取,它还必须能够识别所有的适配卡,这样才能正确地使用所有的硬件。所以,如果没有这个操作系统,计算机就等于一堆废铁。
,“比较完整的操作系统”应该包含两个组件,一个是“核心与其提供的接口工具”,另一个是“利用核心提供的接口工具所开发的软件”。我们以常用的安装Windows操作系统的计算机为例进行说明。我们都使用过Windows里的资源管理器。打开资源管理器的时候,它会显示硬盘中的数据,显示硬盘里面的数据就是核心做的事情,但是,要核心去显示硬盘哪一个目录下的数据,则是由资源管理器实现的。
从定义来看,只要能让计算机硬件正确地运行,就算是操作系统了。所以,操作系统其实就是核心与其提供的接口工具。如上所述,因为最基本的核心缺乏与用户沟通的友好界面,所以在目前,一般提到的操作系统,都会包含核心与相关的用户应用软件。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。