1.计算机总线按其任务可以分为哪四种呢?

2.电脑硬件的总线

电脑系统总线分类,电脑系统总线分类

总线(Bus)是计算机各种功能部件之间传送信息的公共通信干线,它是由导线组成的传输线束, 按照计算机所传输的信息种类,计算机的总线可以划分为数据总线、地址总线和控制总线,分别用来传输数据、数据地址和控制信号。总线是一种内部结构,它是cpu、内存、输入、输出设备传递信息的公用通道,主机的各个部件通过总线相连接,外部设备通过相应的接口电路再与总线相连接,从而形成了计算机硬件系统。在计算机系统中,各个部件之间传送信息的公共通路叫总线,微型计算机是以总线结构来连接各个功能部件的。

总线有PCI,PCIE,I2C,SMBUS,localbus,DDR,DPI.......

计算机总线按其任务可以分为哪四种呢?

1、I2C总线

I2C(Inter-IC)总线1982年由Philips公司推出,是近年来在微电子通信控制领域广泛采用的一种新型总线标准。

它是同步通信的一种特殊形式,具有接口线少,控制方式简化,器件封装形式小,通信速率较高等优点。在主从通信中,可以有多个I2C总线器件同时接到I2C总线上,通过地址来识别通信对象。

2、SPI总线

串行外围设备接口SPI(serial peripheral interface)总线技术是Motorola公司推出的一种同步串行接口。

Motorola公司生产的绝大多数MCU(微控制器)都配有SPI硬件接口,如68系列MCU。SPI总线是一种三线同步总线,因其硬件功能很强,所以,与SPI有关的软件就相当简单,使CPU有更多的时间处理其他事务。

3、SCI总线

串行通信接口SCI(serial communication interface)也是由Motorola公司推出的。它是一种通用异步通信接口UART,与MCS-51的异步通信功能基本相同。

扩展资料

片内总线为CPU内部的寄存器、算术逻辑部件、控制部件以及总线接口部件之间的公共信息通道。片外总线则泛指CPU与外部器件之间的公共信息通道。

通常所说的总线大多是指片外总线。有的资料上也把片内总线叫做内部总线或内总线(Internal Bus),把片外总线叫做外部总线或外总线(External Bus)。

百度百科-系统总线技术

百度百科-内部总线

电脑硬件的总线

按照功能划分,大体上可以分为地址总线和数据总线。有的系统中,数据总线和地址总线是复用的,即总线在某些时刻出现的信号表示数据而另一些时刻表示地址;而有的系统是分开的。51系列单片机的地址总线和数据总线是复用的,而一般PC中的总线则是分开的。

按照传输数据的方式划分,可以分为串行总线和并行总线。串行总线中,二进制数据逐位通过一根数据线发送到目的器件;并行总线的数据线通常超过2根。常见的串行总线有SPI、I2C、USB及RS232等。

按照时钟信号是否独立,可以分为同步总线和异步总线。同步总线的时钟信号独立于数据,而异步总线的时钟信号是从数据中提取出来的。SPI、I2C是同步串行总线,RS232采用异步串行总线。

总线是构成计机系统的其他高速功能部件,如存储器、通道等互相连接的总线。

一个单处理器系统中的总线,大致分为三类:

(1)内部总线:CPU内部连接各寄存器及运算部件之间的总线。

(2)系统总线:CPU同计算  (3)I/O总线:中、低速I/O算机系统的互连机构,是多个系统功能部件之间进行数据传送的公共通路。

设备之间互相连接的总线。

1.总线的特性

物理特性:指总线的物理连接方式,包括总线的根数,总线的插头、插座的形状,引脚线的排列方式等。

功能特性:描述总线中每一根线的功能。

电气特性:定义每一根线上信号的传递方向及有效电平范围。送入CPU的信号叫输入信号(IN),从CPU发出的信号叫输出信号(OUT)。

时间特性:定义了每根线在什么时间有效。规定了总线上各信号有效的时序关系,CPU才能正确无误地使用。

2.总线的标准化

相同的指令系统,相同的功能,不同厂家生产的各功能部件在实现方法上几乎没有相同的,但各厂家生产的相同功能部件却可以互换使用,其原因在于它们都遵守了相同的系统总线的要求,这就是系统总线的标准化问题。 1.单总线结构

在许多单处理器的计算机中,使用一条单一的系统总线来连接CPU、主存和I/O设备,叫做单总线结构。CAI演示如图所示点击演示

此时要求连接到总线上的逻辑部件必须高速运行,以便在某些设备需要使用总线时能迅速获得总线控制权;而当不再使用总线时,能迅速放弃总线控制权。

(1)取指令:当CPU取一条指令时,首先把程序计数器PC中的地址同控制信息一起送至总线上。在“取指令”情况下的地址是主存地址,此时该地址所指定的主存单元的内容一定是一条指令,而且将被传送给CPU。

(2)传送数据:取出指令之后,CPU将检查操作码。操作码规定了对数据要执行什么操作,以及数据是流进CPU还是流出CPU。

(3)I/O操作:如果该指令地址字段对应的是外围设备地址,则外围设备译码器予以响应,从而在CPU和与该地址相对应的外围设备之间发生数据传送,而数据传送的方向由指令操作码决定。

(4)DMA操作: 某些外围设备也可以指定地址。如果一个由外围设备指定的地址对应于一个主存单元,则主存予以响应,于是在主存和外设间将进行直接存储器传送(DMA)。

(5)单总线结构容易扩展成多CPU系统:这只要在系统总线上挂接多个CPU即可。

2.双总线结构

这种结构保持了单总线系统简单、易于扩充的优点,但又在CPU和主存之间专门设置了一组高速的存储总线,使CPU可通过专用总线与存储器交换信息,并减轻了系统总线的负担,同时主存仍可通过系统总线与外设之间实现DMA操作,而不必经过CPU。当然这种双总线系统以增加硬件为代价。 早期总线的内部结构

它实际上是处理器芯片引脚的延伸,是处理器与I/O设备适配器的通道。这种简单的总线一般由50—100条线组成,这些线按其功能可分为三类:地址线、数据线和控制线。

简单总线结构的不足之处在于:

第一 CPU是总线上的唯一主控者。

第二 总线信号是CPU引脚信号的延伸,故总线结构紧密与CPU相关,通用性较差。

当代流行的总线内部结构它是一些标准总线,追求与结构、CPU、技术无关的开发标准,并满足包括多个CPU在内的主控者环境需求。

在当代总线结构中,CPU和它私有的cache一起作为一个模块与总线相连。系统中允许有多个这样的处理器模块。而总线控制器完成几个总线请求者之间的协调与仲裁。

整个总线分成如下四部分:

1.数据传送总线:由地址线、数据线、控制线组成。

2.仲裁总线:包括总线请求线和总线授权线。

3.中断和同步总线:用于处理带优先级的中断操作,包括中断请求线和中断认可线。

4.公用线;包括时钟信号线、电源线、地线、系统复位线以及加电或断电的时序信号线等。